A Contextual Scientometric Analysis of Indonesian Biomedicine : Mapping The Potential of Basic Research Downstreaming

Ria Hardiyati, Irene Muflikh Nadhiroh, Tri Handayani, V.M. Mesnan Silalahi, Rizka Rahmaida, Mia Amelia

Abstract


A content analysis on Indonesian biomedical research publication is conducted based on text mining. The research is necessary to obtain a rich contextual overview of the development of biomedicine research in Indonesia for example in the context of the downstreaming potential of research publications. The results of text data processing using a computational model and bibliometric analysis will provide a richer contextual picture as a proxy to reveal the potential for downstreaming of basic research. Quantitative research is conducted using data sources from Scopus, Google Scholar and universities’s and scientific journal’s repository to analyse the performance at the meso and macro level. Interpretation of the results is qualitatively carried out within a FGD session with domain experts. An attempt is carried out to see the trajectory of series of research publications from basic research stage down to clinical trials. This effort results in an ability to show the research trajectory in anti-malaria drug development from the basic research which evolves to the clinical trial. This study reveals many discontinuities in the trajectory a research topic from basic research to downstreaming in drugs development in Indonesia.


Full Text:

PDF

References


Bansard, J. Y., Rebholz-Schuhmann, D., Cameron, G., Clark, D., van Mulligen, E., Beltrame, E., et al. (2007). Medical informatics and bioinformatics: A bibliometric study. IEEE Transaction on Information Technology in Biomedicine, 11 (3), 237–243.

Bornmann, L., & Haunschild, R. (2017). Does evaluative scientometrics lose its main focus on scientific quality by the new orientation towards societal impact?. Scientometrics, 110(2), 937-943. Crossref

Callon, M., Courtial, J.P., Turner, W.A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

EARTO. (2014). The TRL Scale as a Research & Innovation Policy Tool, EARTO Recommendations, Available at: http://www.earto.eu/fileadmin/content/03_Publications/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf.

Handayani, T., Hardiyati, R., Amelia, M., Rahmaida, R. Nadhiroh, IM. (2016). Kajian saintometrika perkembangan publikasi internasional keanekaragaman hayati Indonesia sebagai bahan rekomendasi kebijakan arah penelitian keanekaragaman hayati nasional. Jakarta: Pusat Penelitian Perkembangan Iptek - LIPI.

Hassanain, M., Anil, S., & Abdo, A. (2016). Institutional Research Evaluation Model (IREM): A framework for measuring organizational research trends and impact and its application in medical academia in Saudi Arabia. Journal of epidemiology and global health, 6(4), 249-256.

Hughes J P, Rees S S, Kalindjian S B and Philpott K L. (2011). Principles of early drug discovery Br. J. Pharmacol. 162 1239–49.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. Machine learning: ECML-98, 137-142.

Keputusan Menteri Kesehatan Republik Indonesia No : 381/MenKes/SK/III/2007, Menteri Kesehatan RI, Jakarta, 2007.

Latapy, M., Magnien, C., & Del Vecchio, N. (2008). Basic notions for the analysis of large two-mode networks. Social networks, 30(1), 31-48.

Lathabai, H. H., Prabhakaran, T., & Changat, M. (2017). Contextual productivity assessment of authors and journals: a network scientometric approach. Scientometrics, 110(2), 711-737. Crossref

Luo, J., Wu, M., Gopukumar, D., & Zhao, Y. (2016). Big data application in biomedical research and health care: a literature review. Biomedical informatics insights, 8, BII-S31559. Crossref

Nalimov, V., & Mulcjenko, B. (1971). Measurement of Science: Study of the Development of Science as an Information Process. Washington DC: Foreign Technology Division.

Natsir, M. (2015). Hilirisasi Penelitian Harus Bermanfaat Bagi Masyarakat. Retrieved from http://www.buzzle.com https://www.republika.co.id/berita/pendidikan/dunia-kampus/15/09/23/nv4wdj219-hilirisasi-penelitian-harus-bermanfaat-bagi-masyarakat

Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the national academy of sciences, 98(2), 404-409.

Niknia, M., Mirtaheri, S.L. (2015). Mapping a decade of linked data progress through co-word analysis. Webology, 12 (2).

Opsahl, T. (2013). Tradic closure in two-mode networks. Redefining the global and local clustering coefficient. Social Networks 35, Crossref

Phrma. (2015). Biopharmaceutical Research & Development: The Process Behind New Medicines. Retrieved from http://phrma-docs.phrma.org/sites/default/files/pdf/rd_brochure_022307.pdf

Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348-349.

Radjasa, O. K. (2015). Hilirisasi Riset untuk Kesejahteraan Masyarakat. Retrieved on 2 January 2018 from http://www.prestasi-iief.org/index.php/id/feature/104-hilirisasi-riset-untuk-kesejahteraan-masyarakat

Rebholz-Schuhman, D., Cameron, G., Clark, D., van Mulligen, E., Coatrieux, J.-L., Del Hoyo Barbolla, E.,et al. (2007). SYMBIOmatics: Synergies in medical informatics and bioinformatics-exploring current scientific literature for emerging topics. BMC Bioinformatics, 8 (Suppl 1), S18.

Silalahi, V. M. M., Hardiyati, R., Nadhiroh, I. M., Handayani, T., Rahmaida, R., & Amelia, M. (2018). A Framework for Text Mining in Scientometric Study: A Case Study in Biomedicine Publications. In Journal of Physics: Conference Series (Vol. 1007, No. 1, p. 012030). IOP Publishing.

Silalahi, M., Hardiyati, R., Nadhiroh, I. M., Handayani, T., Amelia, M., and Rahmaida, R. (2018b). "A text classification on the downstreaming potential of biomedicine publications in Indonesia," 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, 2018, pp. 515-519.

Stegmann, J., & Grohmann, G. (2005). Transitive text mining for information extraction and hypothesis generation. Retrieved July 10, 2008, from http://arxiv.org/abs/cs/0509020.

Stephen, T. (1999). Computer-assisted concept analysis of HCR’s first 25 years. Human Communication Research, 25(4), 498-513.

Sukara, E. and Tobing, I.S.L. (2008). Industri Berbasis Keanekaragaman Hayati, Masa Depan Indonesia. Vis Vitalis Vol. 01 No. 2 tahun 2008.

West, D. (2007). Directions in marketing communication research: An analysis of the international journal of advertising. International Journal of Advertising, 26(4), 543-554.




DOI: http://dx.doi.org/10.14203/STIPM.2018.134

Refbacks

  • There are currently no refbacks.


Copyright (c) STI Policy and Management Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of Journal of STI (Science Technology Innovation) Policy and Management Journal (e-ISSN 2502-5996 p-ISSN 1907-9753). Powered by OJS.